ECUACIONES DIFERENCIALES Y VARIABLE COMPLEJA PROBLEMAS Y EJERCICIOS RESUELTOS
|
|||||||||||
| Codigo |
515.35 L87
|
||||||||||
| Autor |
López Gómez, Julián
|
||||||||||
| Pie de Imprenta |
Madrid,Pearson educación,2002
|
||||||||||
| Caracteristicas |
27cm.
|
||||||||||
| Contenido |
1.- Preliminares. 2.- Diferenciabilidad en sentido complejo. 3.- Fórmula integral de cauchy. 4.- Ceros y singularidades aisladas. 5.- Teorema de cauchy global. 6.- Teoría espectral 7.- Cálculo operacional 8.- Sistemas lineales de ecuaciones diferenciales. 9.- El problema de dirichlet 10.- La transformada de fourier-laplace. 11.- Introducción a las ecuaciones diferenciales no lineales.
|
||||||||||
| Descriptores |
Funciones de variables complejas
|
||||||||||
| Ejemplares |
|
||||||||||